содержание

- 17	1	7.	77	DЛ
1247	 	11	21	11

Отображать	Стр.2
Приступая к работе	
Включение и выключение Литания	Стр.2
Настройка Контрастности Дисплея	Стр.2
Выбор Режима	Стр.3
Меню Функции Приложение	Стр.3
Меню Настройка Калькулятор	Стр.4
Подготовка к Работе	Стр.5
Ввод выражений и значений	
Ограничния Ввода	Стр.6
Редактирование Введенных Данных	Стр.6
Ввод и отображение результатов в режиме математики	Стр.7
Диапазон входного и сообщения об ошибках	
Порядок операций	Стр.7
Стеки Вычислений	Стр.7
Сообщения об ошибках и Локатор Ошибок	Стр.8
Основные Расчеты	
Арифметические Вычсления	Стр.9
Вычисления со Значениями Из Памяти	Стр.9
Вычисления с Дробями	Стр.9
Вычисления с Процентами	. Стр.10
Вычисления с Градусамм-минутами-секундами	. Стр.10
Вычисления с Постоянными Величинами	. Стр.10
Перевод в Метрическую Систему	. Стр.10
Метрические преобразования	. Стр.11
Научных расчеты Функциональные	
Квадрат, коренъ, Куб, Кубичесий, Корень, Степенъ,	
Корень степени, обратное число и Рі	. Стр.11
Логарифм, натуральный логарифм, антилогарифм и Logab	Стр.11
Емена Единиц Измерения Үглов	. Стр.11
Тригонометриеские Вычислния	. Стр.12
Перестановка, Сочтание, Факториалы и Генерация	
Случайных чисел	. Стр.12
Наименьшее общее кратное и Наибольший общий делитель	. Стр. 12

Разложение на Простые Множители Стр. 12 Вычисления Частного и Остатка Стр.13 Преобразование координат Стр.13 Вычисления с Абсолотными Значениями Стр. 13

Инженерное Представление	Стр.13
Перекпючение Форматов Отображения	Стр 13
Риниопочние Форматов отображения	CTD 14
Бычисление с комплексными числами	C1p. 14
Ворилстения с Основанием и и погические врилстения	Стр. 14
Статистические расчеты	
Выбор типа Статистического Вычисления	. Стр. 15
Входных Статистические Данных	Стр.15
Редактирование данных Статистической Выборки	Стр 15
Зкрана Статистические Вычиспения	Стр 16
Зирана Статистические вы июления	Стр. 16
	C 17
Статистические вычисления	CTP. 17
вычисление с Распределение	Стр.17
Расширенный научных расчетов	
Решение Уравнений	. Стр.18
Функция Поиска Решения SOLVE	Стр.19
Функция САLС	Стр.19
Вычисление Произволной	Стр 20
Вычисление Интеграла	Стр.20
Опорации с Матрицами	CTp.20
Операции с матрицами	C== 22
Операции с векторами	CTP.22
Вычисления неравенства	. Стр.23
Вычисления коэффициента	. Стр.24
Функция (х, у) Таблица расчета	Стр.24
Замена батареи	Стр.25
Советы и меры предосторожности	Стр.25
Характористики	Стр 25
Ларактеристики	010.20

Использование этого руководства

- В этом базовом руководстве кратко представлены функции, технические характеристики и меры предосторожности при эксплуатации устройства X Mark | Pro.
- * Для ознакомления с устройством X Mark I Pro просмотрите примеры вычислений, в которых представлены образцы последовательностей вычислений и процедур операций, а также диапазон вычисляемых значений основных функций.

отображать

М

D

R G

FIX

Disp

REM M STOREL STATEPI X MATX VETREON DERIG FLY SELLINE AV Diso sin[∄]+√2

<Индикаторы состояния> S A

- : клавиша Shift
- : клавиша Alpha
- : независимая память
- STO : сохранить в память
- RCL : вызвать из памяти
- STAT : режим статистики
- CPI X : режим вычисления с комплексными числами
- MATX : режим вычисления с матрицами
- VCTR : режим вычислений с векторами EQN
 - : режим решения уравнений
 - : режим градусов
 - : режим радианов
 - : режим градов
- : фиксированное число десятичных знаков SCI
- : экспоненциальное представление LINE
 - : режим отображения в строку
 - : стрелка вверх
 - : стрелка вниз
 - : режим отображения нескольких выражений

Приступая к работе

Включение и выключение питания

Подготовка к эксплуатации

- 1. Вытащите изолирующую ленту батареи, тогда батарея подсоединится к калькулятору и его можно будет включить.
- 2. Нажмите ON Shift CLR 3 CA для сброса настроек калькулятора.

Включение питания: нажмите ОN

Выключение питания: нажмите Shift CA

• Функция автоматического отключения питания

Если калькулятор не используется в течение 7 минут, он автоматически выключается.

Настройка контрастности дисплея

Нажмите Shift MODE **•** Настройка контрастности дисплея.

- чтобы уменьшить контрастность изображения. Нажмите
- , чтобы увеличить контрастность изображения. Нажмите 🖪
- Нажмите СА или он, чтобы подтвердить свой выбор и закрыть экран настройки.
- Чтобы открыть из другого экрана экран Настройка контрастности дисплея, нажмите Shift 3

Выбор РЕЖИМА

- Нажмите MODE; появится экран Выбор режима вычисления.
- Нажмите / , для перехода на следующие / предыдущие страницы.

Операция	Режим		LCD индикатор
MODE 1	COMP	Нормальная Расчеты	
MODE 2	CPLX	Комплекс расчета числа	CPLX
MODE 3	STAT	Статистические и регресс Расчеты	STAT
MODE 4	BASE	Расчеты, связанных с конкретными число систем	
MODE 5	EQN	Уравнение решение	EQN
MODE 6	TABLE	Функция генерации таблицы	
MODE 7	MATX	матричных вычислений	MATX
MODE 8	VCTR	векторные вычисления	VCTR
MODE 1	INEQ	Вычисления неравенства	
MODE Z	RATIO	Вычисления коэффициента	

По умолчанию используется режим СОМР.

Меню Функций Приложений

Режим Приложений содержит математические функции, приложения устройства в каждом режиме вычисления. В каждом режиме вычисления, функции приложения будут отличаться.

- Нажмите <u>МОРЕ</u> и соответствующий номер для того, чтобы войти в режим вычисления.
- Нажмите Арры чтобы войти в меню Приложений.

 Нажмите / для перехода на следующие / предыдущие страницы.

ii) CPLX Mode

i) COMP Mode

1:π 3:Max 5:Q…r	2:Σ 4:Min 6:Mod	1:⊅r∠∂ 3:Ar9 5:Real	2:⊅a+bi 4:Conj9 6:Ima9
7:LCM	8:GCD	oincar	0.1800

iii) STAT Mode

1:Type 2:Data	1:Type 2:Data
3:Edit 4:S-SUM	3:Edit 4:S-SUM
5:S-VAR 6:S-PTS	5:S-VAR 6:S-PTS
7:Distr	7:Distr 8:Reg

In SD mode

In REG mode

iv) BASE Mode

v) EQN Mode

vi) MATX Mode

1:Dim 2:Data 3:VctA 4:VctB 5:VctC 6:VctD 7:VctAns 8:Dot

iii)	INEQ Mode		
	1:Quad 2:Cubic 3:Quart	INEQ INEQ INEQ	

ix) Ratio Mode

1:	a:b=X:d	
4.	a.0-0.n	

Нажмите Аррз Аррз для выхода из меню Приложений.

Меню Настройка калькулятора

Нажмите SNIM MODE, чтобы открыть меню Настройка калькулятора. Для перехода к следующей/ предыдущей странице нажмите // .

1:Maths 3:Deg 5:Gra 7:Sci	2:Lir.a 4:Rad 6:Fix 8:Norm	Нажмите V/	1:ab/c 3:CPLX 5:Disp	2:d/c 4:STAT 6:4CONT
------------------------------------	-------------------------------------	------------	----------------------------	----------------------------

Чтобы выбрать формат ввода и вывода для калькулятора, нажмите [1] Maths или [2] Line

[1] Maths (математический режим): большинство входных и выходных данных вычислений (например, дроби, число п, квадратный корень) отображаются в математическом формате.

[2] Line (строковый режим): большинство входных и выходных данных вычислений отображаются построчно. Также на экране отображается значок «LINE».

Для STAT уравнение, MATX, VCTR, INEQ, RATIO режиме ввода и дисплей формата перейдет в режиме автоматического варианта.

Чтобы выбрать единицы измерения углов, нажмите одну из следующих кнопок: [3] Deg, [4] Rad или [5] Gra

[3] Deg: углы измеряются в градусах [4] Rad: углы измеряются в радианах

[5] Gra: углы измеряются в градах

90° = $\frac{\pi}{2}$ радианах = 100 градах

Чтобы выбрать нужное представление чисел, нажмите одну из следующих кнопок: [6] Fix, [7] Sci или [8] Norm (Пример 1)

[6] Fix: фиксированное количество десятичных знаков; появится надпись [Fix.Фиксированный 0~9?]. Укажите количество десятичных знаков, нажав кнопку [0] – [9].

Пример: 220 ÷ 7 = 31.4286 (FIX 4) = 31.43 (FIX 2)

[7] Sci: экспоненциальное представление; появится надпись [Sci/Hayчный 0~9?]. Укажите количество десятичных знаков, нажав кнопку [0] – [9].

Пример: 220 ÷ 7	= 3.1429 x 10 ¹ (SCI 5)
	= 3.143 x 10 ¹ (SCI 4)

[8] Norm: экспоненциальное представление; появится надпись [Norm/Обычный 1~2?]. Укажите нужный формат экспоненциального представления, нажав кнопку [1] или [2].

Norm 1: экспоненциальное представление автоматически используется для целых чисел, состоящих более чем из 10 цифр, а также для десятичных дробей, имеющих более ДВУХ десятичных разрядов. Norm 2: экспоненциальное представление автоматически используется для целых чисел, состоящих более чем из 10 цифр, а также для десятичных дробей, имеющих более **ДЕВЯТИ** десятичных разрядов.

Пример: 1 ÷ 1000 = 1x10⁻³ (Norm 1) = 0.001 (Norm 2)

Чтобы выбрать формат представления дробей, нажмите [1] а b/с или [2] d/с

[1] а b/с: смешанные дроби [2] d/с: неправильные дроби

Для выбора формата отображения комплексного числа [3] CLPX ([1] + би или [2] г < θ)</p>

[1] + би: Укажите прямоугольных координат
 [2] г < 0 : Укажите координаты Polor

Чтобы выбрать статистический формат отображения, нажмите [4] STAT ([1] ON или [2] OFF)

 [1] ОN: показать столбец FREQ/Частота на экране Ввод статистических данных
 [2] OFF: скрыть столбец FREQ/Частота на экране Ввод статистических данных

Чтобы выбрать разделитель десятичной дроби, нажмите [5] Disp ([1] Dot или [2] Comma)

[1] Dot: формат отображения десятичных дробей с точкой [2] Comma: формат отображения десятичных дробей с запятой

Подготовка к работе

Проверка текущего режима вычисления

С помощью соответствующих индикаторов убедитесь, что выбран правильный режим вычисления (COMP, STAT, TABLE), режим отображения и единицы измерения углов (Deg, Rad, Gra).

Возврат к экрану начальной настройки Нажмите Shiftl ^{CLR} 1 SET-UP (YES) CA

чтобы вернуться к

экрану начальной настройки калькулятора.

Режим вычисления	: COMP
Формат ввода/вывода	: Maths
Единицы измерения углов	: Deg
Формат отображения	: Norm 1
Формат отображения дробей	: d/c
Ввод статистических данных	: OFF
Формат десятичной точки	: Dot

При этом память переменных не очищается.

📕 Инициализация калькулятора

Если текущие параметры калькулятора неизвестны, рекомендуется выполнить сброс параметров (установка режима вычисления «СОМР», единицы измерения углов «Degree», очистка памяти повторения вычислений и переменных) и контрастности дисплея, нажав Shiffi

Ввод выражений и значений

Ограничения ввода

Модель X Mark I Pro позволяет вводить выражения длиной до 99 байт. Когда осталось меньше 10 байт, вид курсора изменяется с « » на « », что свидетельствует об использовании почти максимального объема памяти.

Редактирование введенных данных

Ввод данных начинается с левой стороны дисплея. Если длинавводимых данных превышает 15 символов (Line режим) / 16 символов (математика режим), строка прокручивается вправо. Чтобы прокрутить строку обратно к началу для просмотра введенных данных, используйте кнопки и и .

Пропуск знака умножения и последней закрывающей скобки.

Пример: 2 x log 100 x (1+3) = 16 ЕХ #1

- 1. Пропуск знака умножения (х)
 - При вводе перед открывающей скобкой (): 1 <u>x</u> (2+3)
 - При вводе перед научными функциями, включающими скобки: 2 x cos(30)
 - При вводе перед функцией Random (Случайное число)
 - При вводе перед переменной (A, B, C, D, X, Y, M), π , θ
- Научные функции вводятся с открывающими скобками. Пример: sin(, cos(, Pol(, LCM(.... Далее вводится аргумент и закрывающая скобка).

Режим вставки и замены при вводе

В строковом режиме можно использовать для ввода режим вставки (INSERT ^{Insert}) или замены.

- В режиме вставки (режим ввода по умолчанию) курсор представляет собой вертикальную мигающую линию « | », на месте которой вводится новый символ.
- Для перехода в режим замены нажмите кнопку shift freet курсор примет вид мигающей горизонтальной линии (_)

Новый символ будет вводиться на месте курсора.

В математическом режиме (Maths) доступен только режим вставки. Каждый раз при переходе от строкового режима (Line) к математическому (Maths) происходит автоматическое переключение на режим вставки.

Удаление и исправление выражений

В режиме вставки: переместите курсор на позицию справа от символа или функции, которую требуется удалить, и нажмите DEL

В режиме замены: переместите курсор таким образом, чтобы он оказался под символ<u>ом</u> или функцией, которую требуется удалить, и нажмите DEL.

Пример: 1234567 + 889900

- (1) Замена введенныхчифр (1234567 → <u>123456</u>0) ЕХ #2
- (2) Удаление (1234567 → 1234560) ЕХ #3
- (3) Вставка (1234567 → 1234560) ЕХ #4

Ввод и отображение результатов в режиме Maths

- В математическом режиме вводимые данные и результаты вычислений в виде дробей и определенных функций (log, x², x³, x¹, √₀, ³√₀, √₀, x¹, 10⁴, e¹, Abs) отображаются в рукописном/ математическом формате. ■X45
- Некоторые вводимые выражения занимают в высоту более одного экрана. Максимальная длина ввода: 2 экрана (31х2 точек).
- (2) Память калькулятора содержит ограничения по количеству функций и скобок, которые можно ввести в одном выражении. При необходимости разделите выражение на несколько частей и вычислите их отдельно.
- (3) Если после вычисления часть введенного выражения отсекается и не отображается на экране, нажмите для просмотра полного выражения.

Диапазон входного и сообщения об ошибках

- Точность расчета, входной диапазон Пожалуйста, обратитесь к ... ЕХ #6
- Ошибки складываются и могут достичь больших значений при выполнении последовательных вычислений; это также справедливо в том случае, когда внутренние последовательные вычисления выполняются с использованием операций ^(x^y), ^x√y, ³√, x!, nPr, nCr.

Отображение результатов с использованием

Результаты выуисления могут быть показаны в формате с использованием $\sqrt{-1}$ в следующих случаях:

 Когда промежуточные и конечные результаты вычислений отображаются в следчющем Формате:

 $0 \le a < 100, \quad 1 \le d < 100$ $0 \le b < 1000, \quad 1 < e < 1000$ $1 \le c < 100, \quad 1 \le f < 100$

2. Когда промежутоуный и конечный резчльтатты вычисления содержат один или два члена.

Порядок операций

Калькулятор автоматически определяет приоритет операций для каждой отдельной команды. ЕХ #7

Пример:

Пример 1:

$$1 \div 2\pi = 0.1591549431$$

Пример 2:

$$2 \rightarrow A$$

1 ÷ 2A = $\frac{1}{4}$

Стеки вычислений

- В данном калькуляторе используются области памяти, называемые «стеками». Они служат для хранения числовых значений (чисел) и команд (+, -, х...) во время вычисления в соответствии с их порядком.
- Числовой стек имеет 10 уровней, а стек команд 128 уровней. При попытке вычисления, для которого не хватает объема стеков, возникает ошибка стека [Stack ERROR/ОШИБКА стека].
- Вычисления осуществляются в соответствии с последовательностью, указанной в разделе «Порядок операций». После завершения вычисления значения, хранящиеся в стеках, удаляются.

Сообщения об ошибках и локатор ошибок

Во время отображения на дисплее сообщения об ошибке с указанием <u>пр</u>ичины калькулятор блокируется.

 Нажмите [СА], чтобы закрыть это сообщение и вернуться на начальный экран последнего выбранного режима.

Нажмите или , чтобы просмотреть введенное выражение (курсор будет расположен рядом с ошибкой).

Нажмите ON, чтобы закрыть это сообщение, очистить память повтора вычислений и вернуться на начальный экран последнего выбранного режима.

Сообщение об ошибке	Причина	Действие
Math ERROR/ Математическая ошибка	 Промежуточный или конечный результат выходит за пределы допустимого диапазона вычисления. Попытка выполнить вычисление с использованием значения, выходящего за пределы допустимого за правовода. Попытка выполнения операции, противоречащей математической логике (деление на ноло и т.д.) 	Проверьте введенные значения и убедитесь, что они не выходят за допустимые пределы. Особое внимание с следует обратить на значения, хранящиеся в памяти.
Stack ERROR/ Ошибка стека	 Недостаточный объем числового стека или стека операторов. 	 Упростите вычисление. Разбейте вычисление на две или более отдельных частей.
Syntax ERROR/ Синтаксическая ошибка	Попытка выполнения недопустимой математической операции.	Нажмите ◀ или ▶, чтобы переместить курсор к месту ошибки; внесите необходимые исправления.
Insufficient MEM/ Недостаточно памяти	Результат вычисления параметров в режиме таблицы значений функции содержит более 30 значений.	Уменьшите диапазон вычисления таблицы, изменив начальное и конечное значения и шаг, и повторите попытку.
ОШИБКА Измерения (только для Матричных Векторов)	 В режиме Матрицы и Вектора, размерность (строка, столбец) больше трех. Попытка выполнить недопустимую операцию матрица-вектор. 	Нажмите (или) для отображения локализации причины ошибки и внесения необходимых корректив.

Сообщение об ошибке	Причина	Действие
Can't Solve ERROR (только при функции РЕШЕНИЕ)	Калькулятор не смог получить решение.	 Проверьте наличие ошибок в уравнении, которые Вы вводите. Введите значения переменной решения, которое близко к ожидаемому решению и попробуйте еще раз.
ОШИБКА Переменной (только при функции РЕШЕНИЕ)	 Уравнение неправильное. Уравнение не содержит переменной X. Переменная решения не совпадает с указанной переменной в выражении. 	 В режиме Матрицы и Вектора, размерность (строка, столбец) больше трех. Полытка выполнить недопустимую операцию матрица-вектор. (Смотрите страницы.19)
Ошибка из-за превышения времени ожидания (только в Дифференциальн ых и Интеграционных Вычислениях)	Текущее окончание дифференциального или интеграционного вычисления не соответствует условиям окончания.	Калькулятор не смог получить решение. (Смотрите страницы.20)
Argument ERROR	Неверное использование переменной величины.	жмите мите отображения места нахождения причины ошибки и внесения необходимых корректив.

Основные расчеты

Нажмите MODE 1 для перехода в режим СОМР.

При проведении вычислений на дисплее калькулятора отображаются только индикаторы (результат вычисления не отображается). Чтобы прервать операцию вычисления, нажмите [сл].

Арифметические вычисления

- $+-\times \div$
- Отрицательные значения (кроме отрицательных степеней) при вычислениях необходимо заключать в скобки.
- Данная модель калькулятора поддерживает выражения с 99 уровнями скобок. ЕХ #8

Вычисления со значениями из памяти

ns M- M+ M STO R

Запоминаемые переменные

- Доступно 19 запоминаемых переменных (0 9, А F, М, Х и Y), в которых можно хранить данные, результаты или присвоенные им значения.
- Для сохранения значения в памяти нажмите <u>Shift</u> <u>Sto</u> + клавишу запоминаемой переменной.
- Для вызова значения из памяти нажмите RCL + клавишу запоминаемой переменной.
- Для очистки памяти нажмите 🔘 Shift 500 + клавишу запоминаемой переменной.
- Пример: 23 + 7 (сохранить в переменной А), вычислить сину (память А) и очистить память А ЕХ #9

Независимая память

- Независимая память М использует то же пространство памяти, что и переменная М. Это удобно для вычисления общей суммы простым нажатием <u>M+</u> (добавить в память) или <u>M-</u> (вычесть из памяти).
- Содержимое данного типа памяти сохраняется даже при выключении калькулятора.
- Для очистки независимой памяти (М) нажмите 0 Shift
- Для очистки всех значений в памяти нажмите Shiff CLR 2(MCL) = СА

Память результатов

• Введенные значения или результат последнего вычисления автоматически сохраняются в памяти результатов при

нажатии = , Shift = , M+ , Shift M- , Shift STO . Память

результатов может хранить значения, содержащие до 18 разрядов.

- Для вызова и использования последнего значения из памяти результатов нажмите Ans.
- Память результатов не обновляется при выполнении операции с ошибкой.
- Содержимое памяти результатов сохраняется даже при нажатии СА, смене режима вычисления или выключении калькулятора. **ЕХ #10**

Вычисления с дробями

Данная модель поддерживает вычисления с дробями, а также преобразования между различными форматами отображения чисел: обыкновенные дроби, десятичные дроби, смешанные и неправильные дроби.

Ниже показаны разные форматы ввода/вывода в разных режимах.

- Укажите формат отображения обыкновенных дробей, выбрав в меню настройки нужный вариант: смешанные дроби (■) или неправильные дроби (-).
- Формат смешанных дробей доступен только после выбора варианта (= -) в меню настройки.

	Неправильные дроби (d/c)	Смешанные дроби (а b/c)
Режим Maths	<u>11</u> 3	$3\frac{2}{3}$
Режим Line	11_]3	3_ 2_ 3

- Нажмите [F-D] для переключения представления результатов вычисления в виде обыкновенных или десятичных дробей.
- Нажмите <u>Shiff</u> (^{ам-ас}) для переключения форматов <u>представления</u> <u>результатов вычисления в виде смешанных/неправильных</u> <u>дробей</u>.
- Результат автоматически отображается в виде десятичной дроби, если общее число разрядов значения обыкновенной дроби (целое + числитель + знаменатель + разделительные знаки) превышает 10.
- Когда при вычислении используются и обыкновенные, и десятичные дроби, результат будет отображаться в виде десятичной дроби.

Вычисления с процентами

EX #12

Вычисления с градусами-минутами-секундами

Градусы (часы), минуты и секунды используются в шестидесятеричных вычислениях либо для преобразования шестидесятеричных значений в десятичные.

Градуоы-минуты-секуиды въчисления ↔ преобразование в число с десятичной точкой ЕХ #13

Повторение вычислений и режим нескольких выражений

Функция памяти повторения вычислений

- Память повторения вычислений доступна только в режиме СОМР.
- После вычисления введенные данные и результат вычисления автоматически сохраняются в памяти повторения вычислений.
- Нажмите (или) для просмотра введенных данных и результата выполненного вычисления.

- Когда результат вычисления появится на экране, нажмите или р для изменения выражения данного вычисления.
- Если с правой стороны дисплея с результатом вычисления отображается индикатор ▷, нажмите сА, а затем ◀ или ► для прокрутки вычисления.
- Память повторения вычислений очищается в следующих случаях:
 - 1. При инициализации калькулятора нажатием Shift CLR 3 = СА
 - 2. При изменении режима вычисления или режима отображения.
 - 3. При нажатии ОN
 - 4. При нажатии Shift

Многофункциональный заявления

- Используйте двоеточие :, чтобы положить два или более выражений расчет вместе.
- Первый Выполненные заявление будет иметь "DISP" индикатор, и "DISP" будет пропавших без вести после того, как последняя инструкция выполнена. ЕХ #14

Вычисления с постоянными величинами

Shift C-YALL

X Mark I Pro содержит 79 постоянных величин. Чтобы открыть меню выбора постоянных величин, нажмите кнопку Shiff . На дисплее появится следующее:

- Для перехода к следующей или предыдущей странице выбора величин нажмите кнопку или .
- Для выбора постоянной величины просто нажмите кнопку или .
 Курсор выбора перемещается влево или вправо, выделяя символ константы, одновременно в нижней строке отображается значение выделенной постоянной.

0111

- Нажмите кнопку 😑 для выбора символа выделенной постоянной.
- Можно быстро получить значение постоянной, если ввести ее номер и нажать —, когда курсором выделено <u>0</u> <u>0</u>. ЕХ #15
- Пожалуйста, см. таблицу для постоянного ЕХ #16

Перевод в метрическую систему

TVNC

В калькуляторе имеется 170 пар преобразования, с помощью которых можно преобразовывать различные метрические единицы измерения.

- Нажмите кнопку сомит для входа в меню конвертера.
- Здесь представлено 7 категорий величин (расстояние, площадь, температура, объем, вес, энергия и давление), в общей сложности содержащих 34 обозначения единиц измерения. Нажмите кнопку ↓ Лля выбора другой страницы выбора категории.
- На странице категории перемещайте курсор выбора вправо/ влево, нажимая кнопку или ЕХ #17
- Чтобы быстро вернуться в режим вычисления можно нажать кнопку <a href="mailto:coverlight: coverlight: coverligh
- Если полученным результатом является слишком большое число, на нижнем дисплее появится индикатор [-Е-]. Нельзя нажать кнопку =, чтобы выбрать большое число, но можно выполнить следующие действия:

Последовательность	- Выберите другую величину для
действий А	преобразования, нажав кнопку
Последовательность	- Очистите экран с <u>пом</u> ощью
действий В	кнопки 💿 или са и выйдите из
	экрана выбора.
Последовательность	- Нажмите сомит для возврата
действий С	к экрану предыдущего вычисления.

Пример: Преобразовать 10 + (5 ft² → m²) = 10,4645152 ЕХ #18

Научные расчеты Функциональная

Нажмите MODE 1 для входа в режим СОМР.

π = 3.1415926535897932324

e = 2.7182818284590452324

Квадрат, корень, куб, кубический корень, степень, корень степени, обратное число и число Пи

EX #19

Логарифм, натуральный логарфм, антилогарифм и логарифм ь по основанио а

EX #20

Смена единиц измерения углов

Единицей измерения углов в калькуляторе по умолчанию являются градусы (Degree). При нажатии [Shiff] ^{[SELUP} открывается меню настройки, в котором можно выбрать радианы (Radian) или грады (Gradient).

Для выбора нужной единицы измерения нажмите соответствующую кнопку: 3, 4 или 5. После этого на дисплее появится соответствующий индикатор: **D**, **R** или **G**. Для переключения между градусами, радианами и градами нажимайте [Shiff] ^(вот).

При нажатии 📘	, 2	или З	отобра	жаемое зна	чение
переводится в в	зыбран	ные еді	иницы и	змерения.	EX #21

Тригонометрические вычисления

Перед использованием тригонометрических функций (за исключением гиперболических) выберите соответствующие единицы измерения углов (Deg/Rad/Gra), нажав [Shift] ^{[Str.up}].

Единица измерения углов	Вводимые значения углов	Диапазон доступных для ввода значений v $$
Deg	Числа, кратные 15°	π < 9 x 10 ⁹
Rad	Числа, кратные $rac{1}{15}\pi$ радиан	π < 20 π
Gra	Числа, кратные $rac{50}{3}$ град	π < 10000

- 90° = $\frac{\pi}{2}$ радиан = 100 град. **ЕХ #22**
- Гиперболические (sinh/cosh/tanh) и обратные гиперболические (sinh⁻¹/cosh⁻¹/tanh⁻¹) функции
- При нажатии <u>hyp</u> открывается дополнительное меню гиперболических функций.

EX #23

Перестановка, сочетание, факториалы и генерация случайных чисел

Перестановка: $n \Pr = \frac{n!}{(n-r)!}$

Cочетание: $nCr = \frac{n!}{r!(n-r)!}$

EX #24

🔳 Генерация случайных чисел

Shift Rand

: генерация случайного числа в диапазоне от 0,000 до 0,999. Результат отображается в формате дроби в режиме Maths.

- Alpha
 Него

 : генерация случайного числа в указанном диапазоне (два положительных целых числа). В качестве разделителя используется «.»
 - EX #25
- * Стоимость только пример, результаты будут отличаться каждый раз.

Наименьшее общее кратное и наибольший общий делитель

- LCM: вычисление наименьшего общего кратного для трех (максимум) положительных целых чисел.
- GCD: вычисление наибольшего общего делителя для трех (максимум) положительных целых чисел. EX #26

Разложение на простые множители

 Множитель натуральное число до 10 знаков на простые множители до 3 знаков.

Ptact Homep : 0 < X < 99999 99999 (Х натуральное число)

 Запоминаемая часть, которая не может быть разложена будет заключена в круглые скобки на дисплее.

Пример: 99999 99999 = 3² x 11 x 41 x 271 x (9091) ЕX #27

ЗАМЕТКА

- При любых операциях вычисления, нажатие клавиш <u>Shift</u> ^[Froct] или — или <u>клов</u> или <u>или</u> выведет из режима отображения результатов разложения на простые множители.
- Через меню настройки можно изменить настройку угла единицы (Deg, Rad, Gra) или отобразить настройку цифр (Fix, Sci, Norm).
- [ОШИБКА Math] появиться, если отображается десятичное значение, фракция, результат вычисления отрицательного значения или Pol, Rec, Q...R.

Вычисления частного и остатка

- Частное (Quotient, Q) это результат операции деления, а остаток (Remainder, r) – это число, которое остается после деления с получением целого частного.
- Полученные значения частного (Q) и остатка (r) хранятся в автоматически назначаемых запоминаемых переменных «С» и «D».
- В режиме Maths нажмите или , чтобы прокрутить результат вычислений.
- В режиме Line значения частного (Q) и остатка (r) отображаются в двух строках.
- Использоваться в последующих вычислениях и сохраняться в запоминаемых переменных может только значение частного (Q). EX #28

Преобразование координат

- При использовании полярных координат можно выполнять вычисления и отображать результаты в диапазоне от –180° до 180°. (Аналогично для радианов и градов)
- В режиме Maths нажмите или , чтобы прокрутить результат вычислений.
- В режиме Line координаты (x,y) или (r, θ) отображаются в двух строках.

После преобразования результаты автоматически присваиваются запоминаемым переменным X и Y. Нажмите <u>RCL</u> X или Y для просмотра результатов.

Вычисления с абсолютными значениями

EX #31

Инженерное представление

EX #32

Переключение форматов отображения

- В режиме Maths нажмите F→D для переключения следующих форматов отображения результатов вычисления: обыкновенная дробь ↔ десятичная дробь, формат х ↔ десятичная дробь, π формат √ ↔ десятичная дробь.
- В режиме Line при нажатии F→D переключается ТОЛЬКО в формат обыкновенной дроби ↔ формат десятичной дроби; другие вычисления с координатами х и √ отображаются только в формате десятичной дроби. EX #33

Примечание

- В некоторых результатов расчета, нажав кнопку F-D не будет преобразовывать отображаемое значение.
- Некоторые результате дисплей преобразование может занять длительное время.

Вычисление с комплексными числами

Abs L

Комплексные числа можно вводить в прямоугольной системе координат (z = a + bi) или в полярной системе координат (r $\angle \theta$). При этом число " a " является действительной частью комплексного числа, a " bi " - его мнимой частью (i - мнимое число, равное корню квадратному из -1, $\sqrt{-1}$), " r " - абсолютное значение, a " θ " - аргумент комплексного числа.

■ Нажмите моде 2 для входа в режим CPLX.

Нажмите Арры для того, чтобы выбрать тип вычисления.

Выбор типа комплексного числа

Существует 6 типов вычисления комплексного числа после входа в меню Тип Комплексного Числа, нажмите номер для выбора типа вычисления комплексного числа.

1:⊅r∠∂	2:⊅a+bi
3:Ar9	4:Conj9
5:Real	6:Ima9

Убедитесь, что установлены необходимые единицы измерения угла (Deg, Rad, Grad).

- Значок [i] в результате вычисления показывает мнимую часть комплексного числа; [∠] - значение аргумента комплексного числа θ.
- Для мнимых чисел задействуется область памяти, которая обычно используется для функции повтора.

Преобразование: прямоугольная система координат ↔ полярная<u>систем</u>а координат

Нажмите [Apps]] для преобразования комплексного числа из прямоугольной системы координат в полярную; нажмите [Apps] [2] для преобразования комплексного числа из полярной системы координат в прямоугольную...... ЕХ #34

Вычисление абсолютного значения и аргумента

Используя прямоугольную форму комплексного числа, можно вычислить соответствующее абсолютное значение (r) или аргумент (θ) с помощью кнопки <u>Abs</u> или <u>Apps</u> <u>3</u> соответственно.

EX #35

Сопряженное число комплексного числа

Если комплексное число - z = a + bi, сопряженная величина этого комплексного числа должна быть z = a - bi. ЕХ #36

Определение вещественного / мнимого числа комплексного числа ЕХ #37

Вычисления с основанием n и логические вычисления

- Нажмите кнопку MODE 4 для входа в режим оснований для операций с десятичными (основание 10), шестнадцатеричными (основание 16), двоичными (основание 2), восьмеричными (основание 8) числами или логических вычислений.
- Чтобы выбрать другую систему исчисления в режиме оснований, просто нажмите Becarture (Dec) Десятичная [d], Becarture (D), Becarture (D)
- Кнопка Аррз позволяет выполнять логические вычисления, такие как: логическое объединение [And/И] / [Ог/ИЛИ], исключающее ИЛИ [Xor], исключающее ИЛИ-НЕ [Xnor], дополнение НЕ [Not] и отрицание [Neg].

- Если двоичный или восьмеричный результат расчета имеет более чем 8 цифр, [1 b] / [1с] будет отображаться для обозначения того, что результат имеет следующий блок. Нажатие — «КК клавиши даст возможность переключаться между блоками результата.
- Нельзя использовать научные функции, а также нельзя вводить значение с десятичной дробью или степенью. ЕХ #38

Преобразования с основанием п _____ → ____ → ____ ВIN

Логическая операция ЕХ #40

Статистические расчеты

- Нажмите MODE 3. Появится экран статистических вычислений и включится индикатор STAT.
- Нажмите Аррз 1 (номер) для выбора нужного типа вычисления.

Выбор типа статистического вычисления

Предусмотрено 8 типов статистических вычислений. Для выбора нужного типа нажмите соответствующую кнопку на экране Выбор типа статистического вычисления.

1:SD	2:Lin
3:Quad	4:Lo9
5:€ EXP	6:ab EXP
7:PWr	8:Inv

Кнопка	Статистические вычисления
1 (SD)	Статистика с одной переменной (x)
2 (Lin)	Линейная регрессия с двумя переменными (у = A+Bx)
3 (Quad)	Квадратичная регрессия с двумя переменными (у = A +Bx + Cx ²)
4 (Log)	Логарифмическая регрессия с двумя переменными (y = AxBInx)
5 (e EXP)	Экспоненциальная регрессия E с двумя переменными (у = Ae ^{8x})
6 (ab EXP)	Экспоненциальная регрессия AB с двумя переменными (у = AB ^x)
7 (Pwr)	Степенная регрессия с двумя переменными (у = Ax ^в)
8 (Inv)	Обратная регрессия с двумя переменными (у = A+B/x)

Ввод статистических данных

После подтверждения выбора типа вычислений на экране **Выбор типа статистического** вычисления или нажатия Ароза 2 (Data) в режиме STAT отобразится следующий экран Ввод статистических данных.

- Если в меню настройки калькулятора включить частоту данных «FREQ», на приведенный выше экран добавится столбец FREQ.
- Ниже указано максимальное количество строк для ввода данных.

Тип статистики	FREQ ON	FREQ OFF
Одна переменная (ввод только х)	40	80
2 переменные (ввод х и у)	26	40

- Введенное выражение и значение, отображаемое на экране Ввод статистических данных, находятся в режиме Line (том же, что и режим Comp с состоянием режима Line).
- После ввода данных нажмите затем = , чтобы сохранить значение в статистические регистры и отобразить значение (макс. 6 разрядов) в ячейке. Для перемещения курсора между ячейками можно нажимать клавишу курсора.

Редактирование данных статистической выборки

🔳 Замена данных в ячейке

- (1) На экране Ввод статистических данных переместите курсор в ячейку, которую требуется изменить.
- (2) Введите новое значение данных или выражение, а затем нажмите = .

EX #39

Удаление строки

- (1) На экране Ввод статистических данных переместите курсор в строку, которую требуется удалить.
- (2) Нажмите DEL .

Вставка строки

- (1) На экране Ввод статистических данных переместите курсор в строку, которая будет находиться под ставляемой строкой.
- (2) Нажмите Apps 3 (Edit)
- (3) Нажмите 1 (Line)
- Удаление всех введенных данных STAT
 - (1) Нажмите Apps 3 (Edit)
 - (2) Нажмите 2 (Del-A)

Экран Статистические вычисления

- После ввода данных STAT нажмите СА , чтобы вывести экран Статистические вычисления.
- Используйте экран Статистическое меню для расчета статистического результата. (S-SUM, S-VAR, S-PTS, Reg).

Экран Статистическое меню

На экране Ввод статистических данных или экране Статистические **вычисления** можно нажать Apps , чтобы отобразить экран Статистическое меню.

1 переменная STAT

2 переменные STAT

Элементы STAT	Описание
[1] Type	Вывод экрана статистических вычислений
[2] Data	Вывод экрана ввода статистических данных
[3] Edit	Вывод подменю Edit/Правка для редактирования содержимого экрана редактора STAT
[4] S-SUM	Вывод подменю S-Sum/Вычисление сумм
[5] S-VAR	Вывод подменю S-Var/Вычисление переменной
[6] S-PTS	Вывод подменю S-PTS/Вычисление точек
[7] Distr	Для ввода Distr подменю (P (t), Q (t), R (t))
[8] Reg	Вывод подменю Reg/Вычисление регрессии

Статистические расчеты приводят к [4] S-SUM, [5] S-VAR, [6] S-PTS, [7] Rea

STAT юдменю	Тип STAT	значение	символ	операция
S-SUM	1 и 2 переменная	Суммирование всех х2 значение	Σx ²	Apps 4 1
	STAT	Суммирование всех значение х	Σx	Apps 4 2
	Только	Суммирование всех у2 значение	Σy ²	Apps 4 3
	2-перемен	Суммирование всех и значение	Σу	Apps 4 4
	ной STAT	Суммирование пары ху	Σxy	Apps 4 5
		Суммирование всех значение х3	∑x ³	Apps 4 6
		Суммирование всех х2у пар	Σx ² y	Apps 4 7
		Суммирование всех пар х4	Σx ⁴	Apps 4 8

STAT подменю	Тип STAT	значение	символ	операция
S-VAR	1и2	Количество выборки данных	n	Apps 5 1
	переменная	Средние значения х	x	Apps 5 2
	STAT	Население стандартное отклонение х	хơ _n	Apps 5 3
		Стандартное отклонение выборки х	х <i>о</i> _{п-1}	Apps 5 4
	Только	Средние значения и	У	Apps 5 5
	2-перемен	Население стандартного отклонения у	y $\sigma_{\rm n}$	Apps 5 6
	ной STAT	Пример стандартного отклонения у	уσ _{п-1}	Apps 5 7
S-PTS	1 и 2 переменная	Минимальное значение Х	minX	Apps 6 1
	STAT	Максимальное значение Х	maxX	Apps 6 2
	Толыю 2-переменной	Минимальное значение Ү	minY	Apps 6 3
	STAT	Максимальное значение Ү	maxY	Apps 6 4
Reg	Для не-Quad	Коэффициент регрессии	А	Apps 8 1
	Reg	Регрессионный коэффициент В	В	Apps 8 2
		Коэффициент корреляции R	r	Apps 8 3
		Расчетное значение х	Ŷ	Apps 8 4
		Ориентировочная стоимость у	ŷ	Apps 8 5
Reg	Для Quad	Коэффициент регрессии	А	Apps 8 1
	Reg	Регрессионный коэффициент В	В	Apps 8 2
	только	Регрессионный коэффициент С	С	Apps 8 3
		Расчетное значение x1	х̂1	Apps 8 4
		Расчетное значение x2	x2	Apps 8 5
		Ориентировочная стоимость у	ŷ	Apps 86

Статистические вычисления

Статистические вычисления типа SD:

Расчет функций ∑х², ∑х, п, х, х σ_n, х σ_{n-1}, minX, maxX для данных 75, 85, 90, 77, 79 в режиме SD ЕХ#41

Статистические вычисления, тип «квадратичная регрессия»:

Компания ABC проанализировала эффективность затрат на рекламу в принятых единицах; были получены следующие данные.:

Advertisement expenses: X	18	35	40	21	19
Effectiveness: y (%)	38	54	59	40	38

Использование регрссии для оценки зффективности (оценки значения у), если расходы на рекламу x=30 и оценка уровня расходов на рекламУ (оценки значений X₁, X₂) для зффективности у = 50. ЕХ #42

Вычисление с распределениями

После ввода данных выборки в статическом режиме (SD) или режиме регрессии (REG) можно выполнить вычисления для нормального распределения или распределения вероятностей, например P(t), Q(t) и R(t), где t - это переменная вероятностного эксперимента.

После нажатия Арры 7 отобразится следующий экран выбора.

1: P(2: Q(
3: R(4: ▶ t

Для выбора соответствующих вычислений можно нажать
1, 2, 3 или 4.

P(t): вероятность меньше указанной точки х	$P(t) = \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{t-\omega}{\sigma})^2} dt , \qquad $
Q(t): вероятность меньше указанной точки x и больше среднего значения	Q(t) = 0.5 - R(t), x
R(t): вероятность больше указанной точки х	R(t) = 1 - P(t), x

Пример: выполните расчет распределения вероятностей Р(t) для данных выборки: 20, 43, 26, 46, 20, 43, 26, 19, 23, 20 при x = 26.

```
EX #43
```

Передовые научные расчеты

Решение уравнений

Нажмите MODE 5 для выбора режима уравнения. Нажмите / , для перехода на следующие / предыдущие страницы.

Уравнение товара	описание			
[1] 2 unknow EQN	Линейных уравнений с двумя неизвестными			
[2] 3 unknow EQN	Линейных уравнений с три неизвестными			
[3] 4 unknow EQN	Линейных уравнений с четыре неизвестными			
[4] Quad EQN	Квадратное уравнение, степень 2 уравнение			
[5] Cubic EQN	Кубического уравнения, уравнения степени 3			
[6] Quartic EQN	Уравнения четвертой степени, степени 4 уравнение			

Система линейных уравнений

Система линейных уравнений с двумя неизвестными:

```
a_1x + b_1y = c_1
a_2x + b_2y = c_2
```

Система линейных уравнений с тремя неизвестными:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

Четыре неизвестных систем линейных уравнений:

 $a_1w + b_1x + c_1y + d_1z = e_1$ $a_2w + b_2x + c_2y + d_2z = e_2$ $a_3w + b_3x + c_3y + d_3z = e_3$ $a_4w + b_4x + c_4y + d_4z = e_4$

Пример: Решить систему уравнений с тремя неизвестными:

2x + 4y - 4z = 202x - 2y + 4z = 85x - 2y - 2z = 20 EX #44

Квадратичных, кубических уравнений и Quart

Квадратное уравнение : $ax^2 + bx + c = 0$ (уравнение в виде многочлена второго порядка с одним неизвестным x) Кубическое уравнение : $ax^3 + bx^2 + cx + d = 0$ (уравнение в виде многочлена третьей степени) Quart уравнение : $ax^3 + bx^3 + cx^2 + dx + e = 0$ Пример: Решить кубическое уравнение $5x^3 + 2x^2 - 2x + 1 = 0$

EX #45

Четыре квадратичных, кубических уравнений или кварта, имя переменной начинается с "Х1"

Функция поиска решения SOLVE

- Shift Solve
- В режиме СОМР можно найти решение для любого выражения. Просто введите выражение с различными переменными и нажмите кнопку [Shift] [solve].
 - Решает для X, например, когда уравнение вход, как: X = Y + 5, X
 - Решает для Y, например, когда уравнение вход, как: Y = X + 5,
- Пример: Конус высотой "h", основанием которого является круг радиуса "r". Объем конуса рассчитывается по следующей формуле:

$$V = \frac{1}{3}\pi r^{2}h \quad \left(X = \frac{1}{3}\pi B^{2}C\right)$$

Итак, можно заменить переменную "V" на " χ ", переменную "r" - на "B" и переменную "h" - на "C".

Рассчитайте объем конуса, если радиус равен 5 см, а высота 20 см. Рассчитайте высоту, если объем конуса равен 200 см³, а радиус 2 см **ЕХ #46**

CALC

- ! Если выражение не имеет знака равенства (=), то при поиске решения калькулятор преобразует результат вычисления в нуль (0).
- ! Решение не может быть решена functon уравнение.
- ! Если уравнение решить невозможно, то отобразится сообщение [Solve ERROR / Ошибка вычисления].

Функция CALC

- Функция САLС является областью памяти для сохранения выражений с максимальным количеством действий равным 79. Эти выражения могут вызываться из памяти и вычисляться несколько раз с различными значениями.
- После ввода выражения и нажатия кнопки <u>CALC</u> калькулятор отобразит запрос на ввод текущих значений переменных.
- Имейте в виду, что функция CALC может использоваться только в режимах COMP и CPLX.
- Пример: Дано уравнение Y = 5x² 2x +1, найти значение Y при x = 5 и x = 7. ЕX #47
- ! Сохраненное выражение <u>CALC</u> будет удаляться при каждом новом вычислении, переключении на другой режим или при. выключении калькулятора.

Вычисление производной

- Нажмите кнопку <u>MODE</u> 1, чтобы установить режим СОМР для дифференциальных вычислений.
- Для выполнения вычисления производной необходимо ввести выражение в следующем виде:
 - Shift 🜆
- дифференциальное выражение / a / $\triangle x$)
- Дифференциальное выражение должно содержать переменную х.
- "а" коэффициент производной.
- "△х" диапазон изменения х (точность вычисления)

Пример: Чтобы найти производную функции f(x) = sin(3x + 30) в точке x = 10, △x = 10⁻⁸. ЕХ #48

- В дифференциальном выражении можно оставить △х, калькулятор автоматически заменит это значение на △х.
- Чем меньше введенное значение △х, тем больше времени займет вычисление, и тем точнее будет результат. А чем больше введенное значение △х, тем меньше времени займет вычисление, результат вычисления будет сравнительно менее точным.
- ! Наличие дискретных элементов и резких изменений величины х может привести к неточным результатам или ошибкам.
- При выполнении вычисления производной для тригонометрических функций в качестве единиц измерения угла выберите радианы (Rad).
- Функции Log_ab, i~Rand, Rec (и Pol) не могут быть использованы в выражениях при вычислении производной.

Вычисление интеграла

- Нажмите кнопку MODE 1, чтобы установить режим СОМР для вычисления интеграла.
- Для вычисления интеграла необходимо ввести следующие элементы:

∫₀ подынтегральное выражение 2 а b 2 n)

<u>ا</u>م

- Подынтегральное выражение содержит переменную х.
- "а" и "b" определяют пределы интегрирования определенного интеграла.
- "n" число разбиений (эквивалентно N = 2ⁿ).
- Вычисление интеграла осуществляется по формул Симпсона.

 $\int_{a}^{b} f(x) dx$, tol

Так как количество значащих цифр увеличилось, внутренние вычисления интегралов могут занять много времени. В некоторых случаях даже если на выполнение вычисления затрачивается большое количество времени, результаты расчета могут быть неверными. В частности, если количество значащих цифр менее 1, может отобразиться сообщение ERROR (Ошибка).

Пример: Найти интеграл для функции

- ! При вычислении интеграла от тригонометрических функций в качестве единиц измерения угла выберите радианы (Rad).
- ! Функции Log_ab, i~Rand, Rec (и Pol (не могут быть использованы в выражениях при вычислении интеграла.

Операции с матрицами

- Перед тем как начать операции с матрицами, необходимо создать от одной до трех матриц, называемые А, В и С. Размерность матрицы может быть использована до 4х4.
- Результаты расчетов с матрицами автоматически сохраняются в памяти MatAns. Памятью MatAns можно пользоваться для любых последующих операций с матрицами.

Создание Матрицы

Matrix? 1:MatA 2:MatB 3:MatC 4:MatD

Нажмите СА Аррз для использования приложения МАТХ; нажмите / Аря того, чтобы перейти на следующую / предыдущую страницу.

ПУНКТ МАТХ	ОПИСАНИЕ		
[1] Dim	Укажите название матрицы в D, а также указать размер (до 4 x 4)		
[2] Data	Укажите AD матрицы для редактирования и Соответствующий элемент матрицы		
[3] MatA to MatD	Выбор матрицы для D		
[4] MatAns	Ответ Расчет матрицы и В MatAns магазин		
[5] Det	Функция определитель матрицы-D		
[6] Trn	Транспонированная матрица данных в D-		
[7] Ide	Идентичность матрицы		
[8] Adj	Сопряженный к Матрице		
[9] Inv	Обратная матричных		

Нажмите кнопку сА, чтобы выйти из экрана Создание матрицы.

Редактирования данных Матрицы

- Нажмите СА Ароз 2 (Data), затем укажите матрицу А, В, С или D для редактирования и появится соответствующий индикатор матричного элемента.
- Введите новое значение и нажмите _ для подтверждения редактирования.
- Нажмите СА для выхода из меню редактирования матрицы.

■ Сложение, вычитание и умножение матриц

	[1	2	3`		9	8	7]	
Пример: MatA =	4	5	6	, <i>MatB</i> =	6	5	4	, MatA x MatB=?
EX #50	l 7	8	9,	ļ	3	2	1)	

Складываемые, вычитаемые или перемножаемые матрицы должны иметь одинаковый размер. Попытка сложения, вычитания или перемножения матриц разного размера приведет к ошибке. Например, нельзя сложить или вычесть матрицы 2 x 3 и 2 x 2.

■ Нахождение произведения матрицы на скаляр

Каждый элемент матрицы умножается на одну величину, в результате будет получена матрица той же размерности.

Пример: Умножить матрицу C = $\begin{pmatrix} 3 & -2 \\ -1 & 5 \end{pmatrix}$ на 2 < Результат: $\begin{pmatrix} 6 & -4 \\ -2 & 10 \end{pmatrix}$ =

■ Нахождение определителя матрицы

	(10	- 5	3]	I
Тример: Найти определитель матрицы С =	-4	9	2	
<Результат:-471>	l1	7	-3)	ļ
EX #52				

! Попытка найти определитель матрицы, отличной от квадратной, приведет к ошибке.

■ Нахождение абсолютного значения матрицы

Пример: Найти абсолютное значение обращенной матрицы С из предыдущего примера. **ЕХ #57**

Операции с векторами

- Перед тем как начать вычисления с векторами, необходимо создать один или несколько векторов с именами А, В и С (не более трех векторов одновременно).
- Результаты расчетов с векторами автоматически сохраняются в памяти VctAns. Памятью VctAns можно пользоваться для любых последующих вычислений с векторами.

Создание вектора

■ Нажмите MODE 8 для входа в меню Вектора.

Vector? 1:VctA 3:VctC	2:VctB 4:VctD
-----------------------------	------------------

	Нажмите	CA	Apps	для использования	векторного	инструмента;
--	---------	----	------	-------------------	------------	--------------

1:Dim 3:VctA 5:VctC 7:VctAns	2:Data 4:VctB 6:VctD 8:Dot

ЭЛЕМЕНТЫ МАТХ	Описание
[1] Dim	Укажите имя Вектора от А до D, и укажите размерность (до 3D)
[2] Data	Укажите Вектор А-D для редактирования и соответствующий элемент матрицы
[3] VctA to VctD	Выберите Вектор от А до D
[4] VctAns	Ответ вычисления Вектора и сохранение в VctAns
[5] Dot	Введите команду "•" для получения скалярного произведения вектора вне приложения VCTR MODE

Нажмите СА для выхода из меню создания матрицы.

Редактирование векторных элементов

- Нажмите СА АРОЗ 2 (data), затем укажите матрицу А, В, С или D для редактирования и появится соответствующий индикатор векторного элемента.
- Введите новое значение и нажмите = для подтверждения редактирования.
- Нажмите СА для выхода из меню редактирования вектора.

Сложение и вычитание векторов

Пример: Вектор A = (9,5), вектор B = (7,3), вектор A –

вектор B =? EX #58

! Попытка сложения, вычитания или перемножения векторов с разными размерностями приведет к появлению ошибки. Например, нельзя сложить вектор А (a,b,c) с вектором В (d,e) или вычесть эти векторы друг из друга.

■ Нахождение произведения вектора на скаляр

Каждая координата вектора умножается на одну величину, в результате будет получен вектор той же размерности.

s x VctA(*a*,*b*) = VctB(axs, bxs) Пример: Умножить вектор C = (4,5,-6) на 5 Ех #59

Нахождение скалярного произведения двух векторов

Пример: Найти скалярное произведение вектора А и вектора В. Пусть вектор А = (4,5,-6) и вектор В = (-7,8,9) ЕХ #60

Нахождение векторного произведения двух векторов

- Пример: Найти векторное произведение вектора А и вектора В. Пусть вектор А = (4,5,-6) и вектор В = (-7,8,9) ЕХ #61 ! Попытка векторного или скалярного перемножения векторов с
- разными размерностями приведет к появлению ошибки.

Нахождение модуля вектора

- Пример: Найти модуль вектора С. если вектор С = (4.5.-6) и уже введен в калькулятор. ЕХ #62
- **Пример:** Дан вектор А=(-1, -2, 0) и вектор В=(1, 0, -1), определите величину угла между ними (единицы измерения угла: градусы) и единичный вектор 1, перпендикулярный обоим векторам А и В.

$$\cos \theta = \frac{(A \cdot B)}{|A||B|}$$
, тогда как $\theta = \cos^{-1} \frac{(A \cdot B)}{|A||B|}$

Единичный вектор 1, перпендикулярный A и B = $\frac{A \times B}{|A \times B|}$

Результат: VctA × VctB = (0.6666666666, -0.333333333, 0.6666666666) ЕХ #63

Вычисления неравенства

■ Нажмите MODE ▼ 1 (INEQ) для входа в режим неравенства. Нажмите клавишу 1, 2 или 3 для выбора типа неравенства.

1:Quad INEQ 2:Cubic INEQ 3:Quart INEQ

В меню нажмите клавишу 1, 2, 3 или 4 для выбора типа символа неравенства и ориентацию.

Используйте редактор коэффициента, который появиться, для ввода значений коэффициента. Например, для решения x² +2x -3 < 0. введите коэффициенты а = 1. b = 2. c = -3. нажимая 1 = 2 = (-) 3 = .

Пример: x² + 2x -3 ≥ 0 ЕХ #64

- Следующие операции не поддерживаются редактором коэффициента: M+, Shift M+ M, Shift RCL STO, Pol, Rec и многооператорные значения не могут быть введены в редакторе коэффициента.
- Нажмите СА и Вы возвратитесь в редактор коэффициентов пока отображаются решения.
- Значения не могут быть преобразованы в инженерные обозначения на экране решений.

Отображение Специальных Решений

Значок "Аll" появиться на экране решений, когда решение неравенства состоит только из чисел.

Пример: х² ≥ 0 ЕХ #65

Значок "No-Solution" появиться на экране, когда нет решений неравенства (например, как $x^2 < 0$)

Пример: х² + 3 ≤ 0 ЕХ #66

Вычисления коэффициента

Нажмите MODE ▼ 2 (RATIO) для входа в режим КОЭФФИЦИЕНТА. Нажмите клавишу 1 или 2 для выбора типа коэффициента.

- На экране редактора коэффициента введите до 10 цифр для каждого необходимого значения (a, b, c, d).
 - Например, для решения 3:8=X:12 для X, нажмите 1 в шаге 1, и тогда введите следующее для коэффициентов (a=3,b=8,d=12): 3 = 8 = 12 = .

Пример: для вычисления в коэффициенте 2: 3 = 5: Х ЕХ #67

- Следующие операции не поддерживаются редактором коэффициента: <u>M+</u>, <u>Shift</u> <u>M+</u>, <u>Shift</u>, <u>RCL</u> <u>Sin</u>. Pol, Rec и многооператорные значения не могут быть введены в редакторе коэффициента.
- Значок [Math ERROR] появиться, если Вы начнете вычисление тогда, когда введенный коэффициент равен 0.

Функция (х, у) Расчет таблицы

Введите функцию f(x), чтобы создать таблицу значений функции для x и f(x).

📕 Шаги создания таблицы чисел

- 1. Переключитесь в режим TABLE
 - Нажмите море 6, чтобы перейти к вычислению таблицы значений функции.
- 2. Экран Ввод функции
 - Введите функцию с переменной X (Дела X), чтобы создать результирующую таблицу значений функции.
 - Все другие переменные (А, В, С, D, Y) и независимая память (М) действуют как значение.

- Функция Pol, Rec, Q...r, S, $\frac{d}{dx}$ не может использоваться в экране Function Input/Ввод функции.
- При вычислении значений функции изменяются значения переменной Х.
- 3. Введите сведения о начальном, конечном значениях и шаге (start, end и step)
 - Введите значение, нажмите 🚍 для подтверждения на следующих экранах
 - Введенное значение и отображаемое результирующее значение на следующих экранах находятся в режиме с состоянием Line
 - Для создания таблицы значений функции может использоваться максимум 30 значений х. Ошибка «Insufficient MEM/Недостаточно памяти» отобразится, если введенная комбинация начального, конечного и промежуточных значений составит более 30 значений х

Отображается на экране	Следует ввести:
Start?	Введите нижний предел для значений X (по умолчанию = 1).
End?	Введите верхний предел для значений X (по умолчанию = 5). *Конечное значение должно быть больше начального значения.
Step?	Введите шаг приращения (по умолчанию = 1).

Содержимое не может редактироваться на экране Результирующая таблица значений функции, поэтому следует нажать А, чтобы вернуться на экран Ввод функции. ЕХ#63

Пример: $f(x) = x^3 + 3x^2 - 2x$, чтобы создать таблицу функции на интервале $1 \le x \le 5$, увеличивается с шагом 1.

Замена батареи

Если символы на дисплее тусклые или на экране отображается следующее сообщение, выключите калькулятор и сразу же замените литиевую батарею.

LOW BATTERY

Замените литиевую батарею, используя следующие процедуры:

- 1. Нажмите Shift ^{ОFF} для выключения калькулятора.
- 2. Удалите крышку, сдвинув в направлении, указанном стрелкой.
- 3. Удалите винт, который надежно закреплены крышку на место.
- Выньте старую батарею с помощью авторучки или подобного заостренного предмета.
- 5. Установите новую батарею полюсом «+» вверх.
- 6. Установите крышку на место, закрутите винт и нажмите <u>N</u>, <u>Shiff</u> CA чтобы включить калькулятор.

Предостережение: В случае использования неправильного типа батареи имеется риск ее взрыва. Утилизируйте использованную батарею в соответствии с инструкцией.

Электромагнитные помехи или электростатические разряды могут привести к неполадкам дисплея, а также к потере или изменению содержимого памяти. В таком случае нажмите ON Shiffi Car 3 — Сл, чтобы перезапустить калькулятор.

Советы и меры предосторожности

- В данном калькуляторе имеются прецизионные элементы, например, чипы LSI, поэтому его не следует держать в местах, подверженных реаким изменениям температуры, с высокой влажностью, в грязных или запыленных помещениях, а также в месте, куда попадают прямые лучи солнца.
- Панель жидкокристаллического дисплея изготовлена из стекла, поэтому не следует подвергать ее избыточному давлению.
- Для чистки устройства не следует применять влажную ткань или летучие жидкости, например разбавитель для краски. Используйте только мягкую сухую ткань.

- Не разбирайте это устройство ни при каких обстоятельствах. Если Вы полагаете, что калькулятор работает неправильно, отнесите или отправьте по почте устройство вместе с гарантийным талоном представителю бюро обслуживания компании Canon.
- Никогда не утилизируйте калькулятор запрещенным способом например, в огне, поскольку это может привести к травмированию либо ущербу. Пользователь обязан утилизировать это изделие в соответствии с местным законодательством.
- Производите замену батареи каждые два года, даже если калькулятор редко используется.

Предупреждение по эксплуатации батареи.

- Храните батарею в месте, недоступном для детей.
 Если батарея оказалась проглочена, немедленно обратитесь к врачу.
- Неправильное использование батареи может привести к протеканию, взрыву, повреждениям или травмам.
- Не разбирайте батарею и не заряжайте ее повторно, поскольку это может привести к короткому замыканию.
- Не подвергайте батарею воздействию высоких температур, прямому воздействию тепла и не утилизируйте в огне.
- Не оставляйте разряженную батарею в калькуляторе, поскольку она может протечь и повредить устройство.
- Использование калькулятора с севшей батареей может привести к неправильной работе и повреждению либо полной потере данных в стековой памяти. Постоянно сохраняйте письменные записи важных данных, а также немедленно заменяйте батарею при необходимости.

характеристики

Источник питания	: литиевая батарея (CR2032 x 1)	
Энергопотребление	: 3,0 В пост. тока/0,15 мВт	
Срок службы батареи	: прибл. 2 года	
	(при 1 часе работы в день)	
Автоматическое		
выключение питания	: прибл. через 7 минут	
Температура		
эксплуатации	: 0° ~ 40°C	
Габариты	: 160 (Д) x 76 (Ш) x 11.3 (В) мм	
Macca	: 110.5 r	

 Технические характеристики могут быть изменены без уведомления.